پیش بینی رفتار تغییر شکل داغ آلیاژ آلومینیوم 2030 با استفاده از شبکه عصبی مصنوعی
نویسندگان
چکیده مقاله:
رفتار تغییر شکل داغ مواد بدلیل وابستگی آن به تغییرات کرنش، نرخ کرنش و دما دارای پیچیدگی های قابل ملاحظه ای است و لذا پیش بینی رفتار ماده در این شرایط مشکل می باشد. هدف از این بررسی پیش بینی رفتار تغییر شکل داغ آلیاژ آلومینیوم 2030 با استفاده از یک شبکه عصبی مصنوعی توسعه یافته مناسب می باشد. برای این منظور از آزمایشهای فشار داغ در محدوده دمایی بین 350 تا 500 درجه سلسیوس و در نرخ کرنشهای بین 005/0 تا 5/0 بر ثانیه استفاده شد. با استفاده از نتایج تجربی حاصل از این آزمایشات، یک مدل شبکه عصبی پس انتشار پیش- سو جهت پیشبینی رفتار تغییر شکل داغ این آلیاژ توسعه داده شد که دمای تغییر شکل، لگاریتم نرخ کرنش و کرنش بعنوان ورودی و تنش سیلان به عنوان خروجی این شبکه عصبی در نظر گرفته شد. شبکه مورد استفاده شامل یک لایه مخفی متشکل از 12 نورون با تابع انتقال هلالی مماسی و الگوریتم آموزش لونبرک – مارکارت است. بررسی نتایج پیش بینی حاکی از همبستگی بسیار خوب بین نتایج تجربی و نتایج پیشبینی شده می باشد، که نشان دهنده توانایی بالای مدل شبکه عصبی مصنوعی توسعه یافته در پیش بینی سطوح تنش سیلان، و همچنین نواحی سخت شوندگی و نرم شوندگی دینامیکی در منحنیهای تنش -کرنش می باشد.
منابع مشابه
پیش بینی درصد متان موجود در گاز مراکز دفن زباله با استفاده از شبکه عصبی مصنوعی
Backgrounds and Objectives:A number of different technologies have recently been studied todetermine the best use of biogas, however, to choose optimize technologies of using biogas for energy recovery it is necessary to monitor and predict the methane percentage of biogas. In this study, a method is proposed for predicting the methane fraction in landfill gas originating from Labscalelandfill ...
متن کاملمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
متن کاملپیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA
تبدیل موجک یکی از روشهای نوین و بسیار موثر در زمینه تحلیل سیگنالها و سریهای زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، دادههای حاصل بهعنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیشبینی خشکسالی ارائه میگردد. در این تحقیق، از شبکههای عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایهای شعاعی ((RBF، سری زمانی AR...
متن کاملپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...
متن کاملپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 47 شماره 2
صفحات 79- 86
تاریخ انتشار 2017-07-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023